45 lines
1.2 KiB
Text
45 lines
1.2 KiB
Text
n = 20; % number of points
|
|
points = [random('unid', 100, n, 1), random('unid', 100, n, 1)];
|
|
len = zeros(1, n - 1);
|
|
points = sortrows(points);
|
|
%% Initial set of points
|
|
plot(points(:,1),points(:,2));
|
|
for i = 1: n-1
|
|
len(i) = points(i + 1, 1) - points(i, 1);
|
|
end
|
|
while(max(len) > 2 * min(len))
|
|
[d, i] = max(len);
|
|
k = on_margin(points, i, d, -1);
|
|
m = on_margin(points, i + 1, d, 1);
|
|
xm = 0; ym = 0;
|
|
%% New point
|
|
if(i == 1 || i + 1 == n)
|
|
xm = mean(points([i,i+1],1))
|
|
ym = mean(points([i,i+1],2))
|
|
else
|
|
[xm, ym] = dlg1(points([k, i, i + 1, m], 1), ...
|
|
points([k, i, i + 1, m], 2))
|
|
end
|
|
|
|
points = [ points(1:i, :); [xm, ym]; points(i + 1:end, :)];
|
|
end
|
|
|
|
%{
|
|
This is a block comment. Please ignore me.
|
|
%}
|
|
|
|
function [net] = get_fit_network(inputs, targets)
|
|
% Create Network
|
|
numHiddenNeurons = 20; % Adjust as desired
|
|
net = newfit(inputs,targets,numHiddenNeurons);
|
|
net.trainParam.goal = 0.01;
|
|
net.trainParam.epochs = 1000;
|
|
% Train and Apply Network
|
|
[net,tr] = train(net,inputs,targets);
|
|
end
|
|
|
|
foo_matrix = [1, 2, 3; 4, 5, 6]''';
|
|
foo_cell = {1, 2, 3; 4, 5, 6}''.'.';
|
|
|
|
cell2flatten = {1,2,3,4,5};
|
|
flattenedcell = cat(1, cell2flatten{:});
|